

Managed pasture with thistles cut in mid of July 2018 (fenced area). (Hanns Kirchmeir)

Pasture-weed control by thistle cutting (Georgia)

DESCRIPTION

Thistles invaded massively into village pasture land at 1800m elevation in the Caucasus. By cutting the thistles with a motor-cutter the cover of thistles have been reduced.

The technology was applied in flat sub-alpine pasture land at an elevation of about 1800 m in the village of Shenako in the Tusheti Protected Landscape, Georgia. Precipitation is 750-900mm and mean annual temperature is 2-4°C. Thistles (Cirsium sp.) were invading especially in those sections of the pasture that are rich in nutrients and have medium soil water content. This site conditions can be found mainly at the valley bottom. There are no big machines available in this mountain villages. So the removal was done by motor-cutters. In this particular case STIHL petrol brush cutters were used with a 3 blade bush knife.

The removal of the thistles, which were covering up to 20% of the pasture land will increase the productivity of valuable fodder grass and herbs. The thistles are growing up to 1m height and taking up significant amount of nutrients from the soil and are shading other grass and herbs in their neighborhood. Because of their spices they are not eaten by cows or sheep, while the grazing pressure is increasing on the remaining grass and herb species. This leads to positive selection of thistles and a permanent increase of the thistles number and biomass in comparison to the high quality fodder plants.

The thistles have been cut in mid-June/beginning of July just at the begin of blossom. At this stage, the thistles mobilized most of the nutrients from their root system and spent them in leaf and blossom biomass. By cutting the thistles at this time, the highest impact on the nutrient balance can be reached and no new seeds will be produced in this year. It was observed, that the thistles have been eaten by the livestock when it was cut and dried up.

The motor brush cutter increases significantly the speed of cutting the thistles compared to hand scythe. The thistle has a powerful root system and is re-sprouting from the roots within the same summer. So it is important to repeat the cutting 2-3 times a year and to continue several years until the amount of thistles is permanently reduced.

The reduction of thistles will give more space, nutrients and moisture to other fodder plants and increase the productivity of the pasture land.

The challenge is the coordination of the work load within the users of the community pasture land. It needs a (written) agreement to share the workload for pasture maintenance between the families according to their number of livestock.

LOCATION

Location: Shenako, Kakheti, Georgia

No. of Technology sites analysed: 2-10 sites

Geo-reference of selected sites

• 45.66814, 42.37466

Spread of the Technology: evenly spread over an area (0.02 km²)

In a permanently protected area?: Yes

Date of implementation: 2018

Type of introduction

- through land users' innovation as part of a traditional system (> 50 years)
- during experiments/ research
- through projects/ external interventions

Dense population of thistle on pasture land (Hanns Kirchmeir)

Thistles cut at begin of July (Hanns Kirchmeir)

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

improve production reduce, prevent, restore land degradation

conserve ecosystem

protect a watershed/ downstream areas - in combination with other Technologies

preserve/ improve biodiversity

reduce risk of disasters

adapt to climate change/ extremes and its impacts mitigate climate change and its impacts

create beneficial economic impact

create beneficial social impact

Land use

Land use mixed within the same land unit: No

Grazing land

 Transhumant pastoralism Animal type: cattle - dairy, horses, sheep Is integrated crop-livestock management practiced? No Products and services: meat, milk

Species	Count
cattle - dairy	70
sheep	400
horses	30
cattle - non-dairy beef	35

Water supply

✓ rainfed

mixed rainfed-irrigated full irrigation

Purpose related to land degradation

prevent land degradation

reduce land degradation

restore/ rehabilitate severely degraded land adapt to land degradation not applicable

Degradation addressed

biological degradation - Bs: quality and species composition/ diversity decline

SLM group

pastoralism and grazing land management

SLM measures

management measures - M5: Control/ change of species composition

TECHNICAL DRAWING

Technical specifications

The activity was applied on two plots. Plot 6 is 0.7 ha of size and located in the unfenced area. Plot 7 is 1.3 ha of size and located inside an electric fence. The hatched area (8) is indicating the fenced area.

Author: Hanns Kirchmeir

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

 Costs are calculated: per Technology area (size and area unit: 2 ha)

- Currency used for cost calculation: USD
- Exchange rate (to USD): 1 USD = n.a
- Average wage cost of hired labour per day: n.a

Most important factors affecting the costs

The investment in the brush cutter will only pay off if large parts of pastures are managed.

Establishment activities

1. Prepare machinery and organize people (Timing/ frequency: June)

2. Select pasture plots were the measure will be applied (Timing/ frequency: June)

3. Cut the thistles on the selected pasture plots (Timing/ frequency: End of June - Mid of July)

Establishment inputs and costs (per 2 ha)

Establishment inputs and costs (per 2 ha)								
Specify input	Unit	Quantity	Costs per Unit (USD)	Total costs per input (USD)	% of costs borne by land users			
Labour								
Selection of sites, preparation of materials and people	person-days	3.0	37.0	111.0				
Labour for cutting thistles on 2 ha	person-days	10.0	20.0	200.0				
Equipment								
High quality brush cutter	pieces	1.0	800.0	800.0				
Patrol (20l) and diesel (30l) for brush cutter (6 days, 8h/day 1l/h)	'liter	50.0	1.0	50.0				
Total costs for establishment of the Technology								
Total costs for establishment of the Technology in USD								

Maintenance activities

1. Repeat cutting of thistles 2x per year (Timing/ frequency: June/July and September)

Maintenance inputs and costs (per 2 ha)

Specify input	Unit	Quantity	Costs per Unit (USD)	Total costs per input (USD)	% of costs borne by land users
Labour					
labour for cutting thistles (2ha)	person-days	6.0	20.0	120.0	100.0
Equipment					
Patrol for brush cutter	liter	96.0	1.0	96.0	
Total costs for maintenance of the Technology				216.0	
Total costs for maintenance of the Technology in USD				216.0	

NATURAL ENVIRONMENT

Average annual rainfall

< 250 mm 251-500 mm 501-750 mm 751-1,000 mm 1,001-1,500 mm Agro-climatic zone humid sub-humid semi-arid arid

Specifications on climate

Average annual rainfall in mm: 850.0

Main rainfall in spring and autumn, July and August is the dry season.

Name of the meteorological station: Data from CHELSA.ORG Because of low annual temperature (2-4°C) the

1,501-2,000 mm 2,001-3,000 mm 3,001-4,000 mm > 4,000 mm

evapotranspiration is low and most of the year there is no water shortage. But in August and September drought can occur.

Slope

✓ flat (0-2%) gentle (3-5%)

moderate (6-10%) rolling (11-15%) hilly (16-30%) steep (31-60%) very steep (>60%)

Landforms

plateau/plains ridges mountain slopes hill slopes footslopes ✓ valley floors

Altitude

101-500 m a.s.l. 501-1,000 m a.s.l. 1.001-1,500 m a.s.l. ✓ 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3.001-4.000 m a.s.l. > 4,000 m a.s.l.

0-100 m a.s.l.

Technology is applied in

convex situations ✓ concave situations not relevant

Soil depth

very shallow (0-20 cm) shallow (21-50 cm) moderately deep (51-80 cm)

✓ deep (81-120 cm) very deep (> 120 cm) Soil texture (topsoil)

coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)

Soil texture (> 20 cm below surface)

coarse/light (sandy) medium (loamy, silty) fine/ heavy (clay)

Topsoil organic matter content

high (>3% ✓ medium (1-3%) low (<1%)

Groundwater table

on surface ✓ < 5 m 5-50 m > 50 m

Availability of surface water

excess ✓ good medium poor/ none Water quality (untreated)

good drinking water poor drinking water (treatment required)

for agricultural use only (irrigation) unusable

Water quality refers to: both ground and surface water

Is salinity a problem?

✓ No

Occurrence of flooding

Yes ✓ No

Species diversity

high ✓ medium low

Habitat diversity

high medium ✓ low

CHARACTERISTICS OF LAND USERS APPLYING THE TECHNOLOGY

Market orientation

✓ subsistence (self-supply) mixed (subsistence/

commercial) commercial/ market Off-farm income

less than 10% of all income 10-50% of all income

> 50% of all income

Relative level of wealth

very poor poor ✓ average rich

Level of mechanization

✓ manual work animal traction

mechanized/ motorized

Sedentary or nomadic

Sedentary ✓ Semi-nomadic Nomadic

Individuals or groups individual/ household

groups/ community cooperative

employee (company, government)

Gender

very rich

women ✓ men

Age

children youth middle-aged elderly

Area used per household

< 0.5 ha 0.5-1 ha 1-2 ha 2-5 ha 5-15 ha ✓ 15-50 ha 50-100 ha 100-500 ha

500-1,000 ha

1,000-10,000 ha > 10,000 ha

Scale

small-scale ✓ medium-scale large-scale

Land ownership

state company

communal/ village group

individual, not titled individual, titled

Land use rights

open access (unorganized) communal (organized)

leased individual

Water use rights

open access (unorganized) communal (organized)

leased individual

Access to services and infrastructure

health education technical assistance employment (e.g. off-farm) markets energy roads and transport drinking water and sanitation financial services

1 poor good poor 1 good good poor good good poor poor good good poor 1 good poor **v** good

Most important of-farm income is tourism (guesthouses, crafts).

IMPACTS

By reduction of thistles the space for other plant species has increased.

Socio-cultural impacts

Ecological impacts

Off-site impacts

COST-BENEFIT ANALYSIS

Benefits compared with establishment costs

Short-term returns very negative very positive very positive very positive very negative very positive very positi

Benefits compared with maintenance costs

Short-term returns very negative very positive

The productivity of the pastureland is 2-3t/ha per year. The removal of thistles can lead on the long term to an increase of fodder by 20% (400-600kg/ha per year). This is equivalent to 15-20 hay-bales a 3 USD (total 45-60 USD/ha and year). The amount of time for cutting the thistles and the needed patrol will decrease when during the next years so a positive balance between investment and return is expected.

CLIMATE CHANGE

-

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single cases/ experimental

1-10% 11-50%

> 50%

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

V 0-10%

11-50%

51-90%

91-100%

Has the Technology been modified recently to adapt to changing conditions?

To which changing conditions?

climatic change/ extremes changing markets labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

- Decreasing the cost for maintanace of cattle
- Reducing the working hours
- Improving the pastures via weed control

Strengths: compiler's or other key resource person's view

- Easy to apply, no specific skills needed
- Visible impact within a few years

Weaknesses/ disadvantages/ risks: land user's view \rightarrow how to overcome

 Irresponsibility of some members of the community during the maintenance of el-fence

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's view → how to overcome

- No responsibility within the community pasture land for maintenance of pasture land. → A new regulation on how to share the workload of pasture maintenance could be negotiated between villagers.
- Machinery is expensive. → The investment will pay off when the measures are applied to the entire pasture land (100-200 ha).

REFERENCES

Compiler

Hanns Kirchmeir

Date of documentation: Dec. 18, 2018

Reviewer Ursula Gaemperli

Last update: Aug. 7, 2019

Resource persons

Hanns Kirchmeir - SLM specialist Kety Tsereteli - co-compiler

Full description in the WOCAT database

https://qcat.wocat.net/en/wocat/technologies/view/technologies_4273/

Linked SLM data

n.a

Documentation was faciliated by

Institution

- Regional Environmental Centre for the Caucasus (REC Caucasus) Georgia
- Project
 Applying Landscape and Sustainable Land Management (L-SLM) for mitigating land degradation and contributing to poverty reduction in rural area (L-SLM Project)